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Hysteresis in the current-voltage curve of a resonant tunneling
diode is simulated and analyzed in the quantum hydrodynamic
(QHD) model for semiconductor devices. The simulations are the
first to show hysteresis in the QHD equations and to confirm that
bistability is an intrinsic property of the resonant tunneling diode.
Hysteresis appears in many settings in fluid dynamics. The simula-
tions presented here show that hysteresis is manifested in the exten-
sion of ¢classical fluid dynamics to guantum fluid dynamics. A finite
element method for simulation of the time-dependent QHD model
isintroduced. The finite element method is based on a Runge-Kutta
discontinuous Galerkin method for the QHD conservation laws and
amixed finite element method for Poisson’s equation and the source
terms in the QHD conservation laws. @ 1995 Academic Press, Inc.

L. INTRODUCTION

The quantum hydrodynamic (QHD} model approximates
quantum cffects in the propagation of electrons in a semicon-
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ductor device by adding quantum corrections to the classical
hydrodynamic equations, The leading O(#*) quantum correc-
tions have been remarkably successful in simulating the cffects
of electron tunneling through potential barriers including single
i1, 2] and multiple {3} regions of negative differential resistance
in the current—voltage curves of resonant tunneling dicdes.

There are three major advantages of using the quantum hy-
drodynamic model over other methods for simulating quantum
semiconduclor devices. First, the QHD method 1s much less
computationally intensive than the Wigner function [4] or den-
sity maltrix [5] methods, and includes the same physics if the
expanston parameter %%/8mTi? is small. Second, the QHD equa-
tions are expressed in terms of intuitive classical fluid dynamical
quantitics (c.g., density, velocily, and temperature). Third, well-
understood classical boundary conditions can be imposed in
simulating quantum devices.

Intrinsic bistability (as opposed to extrinsic bistability, which
is duc 1o the coupling of the resonant nneling diode to an
external cireuit} in the measured current—voltage corves of
double barrier resonant wnneling diodes has been reported by
various experimental groups (see Ref. [6]). In this investigation,
we present QHD simulations of hysteresis in a GaAs/
Al,Ga,_,As double barrier resonant tunneling diode at 77 K.
These are the first simulations of the QHD eguations to show
hysteresis. The simulations demonstrate that bistability is an
intrinsic property of the resonant tunneling diode, in agreement
with simulations of the Wigner—Boltzmann equation [4].

Thus the simulations presented here show that the O(4%)
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QHD equations reproduce important features of solutions to
the full Wigner—Boltzmann equation and that hysteresis occurs
in the extension of classical fluid dynamics to quantum fluid dy-
namics.

We introduce a finite element method for simulating the
time-dependent QHD model, which generalizes a method suc-
cessfully applied to two-dimensional classical hydrodynamic
simulations of a MESFET [7]. The finite element method is
based on a Runge—Kutta discontinuous Galerkin method for
the QHD conservation laws and a mixed finite element method
for Poisson’s equation and the source terms in the QHD conser-
vation laws,

Points on the current—voltage curve are obtained by inte-
grating the time-dependent QHD equations to steady state.

2. THE QUANTUM HYDRODYNAMIC MODEL

The QHD model has exactly the same structure [2] as the
classical hydrodynamic model (electrogasdynamics):
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where n is the electron density, u is the velocity, m is the
effective electron mass, P; is the stress tensor, V = —e¢ is the
potential energy, ¢ is the electric potential, ¢ = 0 is the elec-
tronic charge, W is the energy density, q is the heat flux, T, is
the temperature of the semiconductor lattice in energy units (ks
is set equal to 1), £ is the dielectric constant, & is the density
of donors, and N, is the density of acceptors. Spatial indices
i, jequal 1, 2, 3, and repeated indices are summed over. The
transport equations (1)—(3) express conservation of electron
number, momentum, and energy, respectively, and Eq. (4) is
Poisson’s equation. The classical collision terms in Egs. (2)
and (3) are modeled by the relaxation time approximation, with
momentum and energy relaxation times 7, and 7,. The heat
flux is specified by Fourier’s law q = —&V T, where 7T is the
electron temperature.

Quantum mechanical effects appear in the stress tensor and
the energy density. Reference [2] derives the stress tensor and
the energy density for the O(f%) momentum-shifted thermal
equilibrium Wigner distribution function [8]:
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FIG. 1. Doping/10" cm™ and location of potential barriers (shaded gray).
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Ancona, lafrate, and Tiersten [9, 10] derived expression (5) for
the stress tensor. In Ref. [1], Grubin and Kreskovsky formulated
a one-dimensional version of the QHD equations.

The expansion parameter in the asymptotic series (5} and
(6) is actually A*/8mT1?, where [ is a characteristic length scale
of the problem [10, 11]. For the resonant tunneling diode in
Section 3 with T= T, = 77 K and { = 100 A, the expansion
parameter =0.23.

In one dimension, the QHD model has two Schrédinger
modes, one parabolic mode, and one elliptic mode. Thus eight
boundary conditions are necessary. Well-posed boundary con-
ditions for the resonant tunneling diode are n = Np, dnfox =
0, and T /9x = 0 at the left and right diode boundaries x_
and xg, with a bias AV across the device: V(x) = T log(n/n)
and V(xp) = T log(n/n) + eAV, where n, is the intrinsic
electron concentration.

3. SIMULATIONS OF HYSTERESIS

To exhibit hysteresis, we simulate a GaAs resonant tunneling
diode with double Aly;Gag7As barriers (the barrier height
B = 0.209 eV). The doping density Ny = 10" cm™? in the n*
source and drain, and N, = 5 X 10¥ ¢m™ in the n channel
{see Fig. 1). The channel is 250 A long, the barriers are 50 A
wide, and the well between the barriers is 50 A wide. The
device has 50 A spacers between the barriers and the contacts
(source and drain) to enhance negative differential resistance.

The barrier height % is incorporated into the QHD transport
equations (1)—(3) by the replacement V — V + 9. Poisson’s
equation is not changed.

For the classical momentum and energy relaxation times, we
use modified Baccarani—Wordemann models:

Ty
T, = T T (7
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FIG.2. Currentdensity in kiloamps/em? vs. voltage for the resonant tunnel-

ing diode at 77 K.
’
Ty = —2—p (1 +

where the low-energy momentum relaxation time 7, is set
equal to 0.9 ps from the low-field electron mobility in GaAs
at 77 K. For lower valley electrons in GaAs at 77 K, the
effective electron mass m = 0.063 m,, where m, is the
electron mass, and the saturation velocity v, = 2 X 1
cm/s. kg is set equal to 0.4 in the Wiedemann—Franz formula
for thermal conductivity,

3IDT ) ®

(1/2)mu?

q=—kVT, k= xTenTo/m. (9
The dielectric constant £ = 12.9 for GaAs.

The current—voltage curve for the resonant tunneling diode
is plotted in Fig. 2 for AV increasing from 0 to 022 V
(upper curve) and decreasing from 022 to ¢ V (lower
curve). Note that hysteresis occurs predominantly in the region
of negative differential resistance. The physical mechanism for
hysteresis is that electrons *‘see’’ a different potential energy
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FIG. 3. Electron charge/(—e) in 10" em™ in the diode vs. voltage.

FIG.4. Electroncharge/(—¢)in 10" cm™2 in the quantum well vs. voltage.

due to different accumulated electron charges in the diode
when the applied voltage is decreasing than when the applied
voltage is increasing [4]. The electron charge per area in
the diode is plotted in Fig. 3. The discontinuities in electron
charge at the hysteresis points are intrigning—usually the
current is discontinuous at the hysteresis points—and reflect
a complex underlying mathematical structure; see Golubitsky
and Schaeffer [12, pp. 222-225] for a discussion of various
possibilities that can occur for a ‘‘nondegenerate cubic™’
bifurcation problem. Figure 4 shows the electron charge per
area in the quantum well, which is also discontinuous at the
hysteresis points.

From the mathematical point of view, hysteresis corresponds
to the existence of multiple steady states. Which steady state
the computational solution converges to as ¢t — = depends on
the initial conditicns.

When the applied voltage is decreasing in the hysteresis loop
(0.135 V = AV = (.205 V), the electron density is slightly
lower in the quantum well and substantially higher around the

-2
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FIG. 5. Log[Density/10" em™] for AV = 0,135 V. In this and subsequent
figures, the black curve is the solution for increasing voltage and the grey
curve is the solution for decreasing veltage, and x is in 0.1 pm.
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FiG. 6. Log|Density/10"® ¢cm™] for AV = 0.17 V.

channel/drain junction (see Figs. 5-7). The fact that the electron
charge in the well is iower for decreasing voltage implies,
through Gauss’ law

V) = Vi + eB)(x —x0 + £ [ 9ds,  (10)

where 3(x) = ¢ f jL (N(s) — n(s))ds is the total charge per area
between x. and x and E is the electric field, that the effective
potential barriers V + @& are higher (see Figs. 8-10), thus
allowing less current to flow through the device, In Eq. (10),
the electric field £ = d(V/e)/dx vanishes at x_ for increasing
voltage in the hysteresis loop and is small and positive (which
also increases the effective barrier heights) for decreasing voli-
age (see Figs. 8-10.) The densities for increasing (decreasing)
applied voltage in the hysteresis loop are almost identical, with
a slight increase (decrease) in the density in the quantum well
as the voltage increases (decreases).

Note also that tor decreasing voltage in the hysteresis loop,
the electron temperature is slightly higher in the source and
the well (see Figs, 11-13),

Log{Density]
&

FIG. 7. Log|Deasity/10"® cm™] for AV = 0,205 V.
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FIG. 8. Coenduction band energy in eV for AV = 0,135 V.

4. NUMERICAL METHOD

We have generalized a finite element method [7], which was
successfully applied to two-dimensional classical hydrody-
namic simulations of a MESFET, for simulation of the time-
dependent QHD model. The finite element method is based on
a Runge—Kutta discontinuous Galerkin method for the QHD
conservation laws and a mixed finite element methed for Pois-
son’s equation and the source terms in the QHD conserva-
tion laws,

We first rewrite the QHD transport equations (1)—(3) in a
form which is identical to that of the classical hydrodynamic
model with source terms:
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FIG, 9. Conduction band energy in eV for AV = 0.17 V.
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where W, is the classical energy density,

W, = 3T + £ mmud, (14)
O is the quantum potential (see, e.g., [13]),
— ﬁ2 1 2
0= 3. 7" Vn, (15)
and Q is given by
An k? n
= Ve -——V- wy——u- VO.
Ow Y log{m) m V- (aVu) 3 u-vVg. (16)

The stress tensor is related to the quantum potential through
the formula
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FIG. 11. Electron temperature in eV for AV = (.135 V.

If Q@ and Qy are set to zero, Eqs. (11)—-(13) are exactly the
classical hydrodynamic transport equations.

Equations (11)—(13) can be written in conservation law
form as

ow o i
o + V- F(w) = R(w),

(18)
where w = (n, mau,, mnu,, mau,, Wi,

We will briefly describe the Runge-—-Kuita discontinuous Gal-
erkin (RKDG) method for discretizing the left-hand side of Eq,
(18) and then the mixed finite element method for discretizing
Poisson’s equation and the right-hand side of Eq. (18). Details
for the classical hydrodynamic model are given in Ref. [7].

Suppose that ) is the device domain and T = (0, 15,0 is
the time interval of interest. First, let T, be a triangulation of
) and set

Vi = {¢ € L™(£): ¢fr|x is linear, VR & T1,}. (19)
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FIG. 13. Electron temperature in eV for AV = 0.205 V,
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Then for r € &, each of the components of the approximate
solution w,(r) is taken in V;, and Eq. (18) is discretized in space
using the discontinuous Gaterkin method. The semi-discrete
equations are written in the ODE form

dw,
— = Ly{w;) + Ry(wy),

” wy(t = 0} = wy,

(20

where each of the components of Wy, is taken to be the L-
projection of the comresponding component of w, onto V,, and
L, is the approximation of —V - ¥. Equation (20) gives an
approximation w; to w which is formally second-order accurate
in space. The second-order accurate (in time) Runge-Kutta
method is used to discretize the ODE (20). Finally, a local
projection AT, is applied to the intermediate valves of the
Runge—Kutta discretization to enforce nonlinear stability
{through limiting the slope of the solution).

Let {(t,, £,+1)}i=¢ be a partition of I into subintervals, and
set At, = t,,, — t,. Then the RKDG method is implemented
in the following way:

1. Set wi = AT, (wy);
2. Forn=0,.., N~ 1, compute wj*!:
(i) Setwl = wi;
(i) Compute w'" and wil:
wi!l = ATL, (W) + AL, W) + AzR, (wi);
w, = wi'l + AL, (W) + ArR(wl);
will = AlL Glw; + wy));
(ifi) Set wit' = wiz,

The approximation operator —L, and the local projection
ATl, are described in Ref, (7]

To discretize Poisson’s equation and the right-hand side of
Eq. (18), we use the lowest-order Raviart—Thomas [14] mixed
finite element method. We sketch out the details only for Pois-
son’s eguation,

V-E=§(ND—NA—n), E=-VéinQ (1)
with Dirichlet or Neumann boundary conditions
¢ =¢pondfl, E-n=0onoaly. (22)

Here n is the outward pointing unit normal to 88, 30} =
a0, U 30, and 80, N 98y = &,

The mixed finite element method discretization of Egs. (21)
and (22) gives the approximation (E,, ¢,) € U} X W, as the
solution of the weak formulation

(V-Ei, &) = (g (Np — Ny — ny), §)a vEeEW, (23)
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where (4, v) = Jo u v dx dy dz, {u, V)i, = Jan, ul(y) v(y) dv,
#; is the approximate density computed by the RKDG method,
and U? X W, is the lowest-order Raviart-Thomas mixed finite
element space. This space over rectangular paralelepipeds is
defined by

U? = {£€ H(div; Q): £l = (ah + ajx, a} + aby, a} + ab2),

ay € R, VRETL; & nls, = 0} (29)

W, = {£ € L} (}): &z is a constant, YR € T,}. (26)
Finally, the approximation E, is used to evaluate the terms in
R in Eq. {18) that involve E. The mixzed finite element method
gives the electric field in the precise form needed by the RKDG
method and to a better approximation {14, 15] than more stan-
dard finite element and finite difference methods,

5. CONCLUSION

The existence of intrinsic bistability in the resonant tunneling
diode has been confirmed through simulations of the quantum
hydrodynamic model. The simulations demonstrate that the
O(HY) QHD equations reproduce important features of solutions
to the full Wigner—Boltzmann equation.

Hysteresis appears in many settings in fluid dynamics, per-
haps most spectacularly in Taylor—Couette flow. In this investi-
gation, we have shown that hysteresis is manifested in the
extension of classical fluid dynamics to quantum fluid dynam-
ics. As in the classical case, bifurcation theory can be applied
in analyzing the hysteresis points (see Ref. [16] for an analysis
of Taylor—Couette hysteresis). In this analysis, the Lyapunov—
Schmidt reduction can be applied analytically and numerically
to the solutions near the hysteresis points.

In semiconductor device simulation, numerical methods must
be robust over a wide parameter regime, due to the extreme
variations in doping densities in typical devices. In addition,
the left-hand side of the QHD equations (18} defines a nonlinear
hyperbolic operator, and its hyperbolic modes permit the devel-
opment of shock waves [17-20] in the classical hydrodynamic
model. The novelty of our finite element method lies in the
combination of the RKDG shock-capturing method for the
nonlinear transport equations with a mixed finite element
method for Poisson’s equation and the right-hand side of Eq.
(18). Since the RKDG/mixed finite element method works well
for simulating both the classical and quantumn hydrodynamic
models, a single simulator can be used for modeling both stan-
dard and quantum devices.
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